Mimar Sinan Fine Arts University Institutional Repository

DSpace@MSGSÜ digitally stores academic resources such as books, articles, dissertations, bulletins, reports, research data published directly or indirectly by Mimar Sinan Fine Arts University in international standarts, helps track the academic performance of the university, provides long term preservation for resources and makes publications available to Open Access in accordance with their copyright to increase the effect of publications.

Search MSGSÜ

Show simple item record

dc.contributor.authorKandiran, Engin
dc.contributor.authorHacınlıyan, Avadis S.
dc.contributor.authorPerdahçı, Nazım Ziya
dc.date.accessioned2025-02-27T07:45:44Z
dc.date.available2025-02-27T07:45:44Z
dc.date.issued2024en_US
dc.identifier.citationKandiran, E., Hacınlıyan, A.S., Perdahçı, N.Z. (2024). Generalized Normal Forms in Dynamical Systems Near Equilibrium. In: Skiadas, C.H., Dimotikalis, Y. (eds) 16th Chaotic Modeling and Simulation International Conference. CHAOS 2023. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-031-60907-7_20en_US
dc.identifier.isbn978-303160906-0
dc.identifier.issn22138684
dc.identifier.urihttps://hdl.handle.net/20.500.14124/9518
dc.identifier.urihttps://doi.org/10.1007/978-3-031-60907-7_20
dc.description.abstractChaotic behavior of continuous dynamical systems is usually investigated using numerical techniques where sensitivity requires correct choice of method. Calculations may lead to truncation errors so that the dynamical behavior of the system might be misunderstood. To get a better understanding of the system, a more comprehensive analytic approach should be used to complement numerical methods. The central manifold or normal form approach can enable one to understand the system if the eigenvalue spectrum of the linearized system has the required characteristics. An alternative approach is using non near identity transformations. In this study, we try to modify the eigenvalue spectrum by means of scaling or logarithmic transformations to selected nonlinear systems mostly with three degrees of freedom that can modify or push resonances to higher orders and remove or simplify continuous time dynamical systems, such as those studied by Sprott to get a better picture of its qualitative behavior.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.ispartof16th Chaotic Modeling and Simulation International Conference. CHAOS 2023. Springer Proceedings in Complexityen_US
dc.rightsinfo:eu-repo/semantics/restrictedAccessen_US
dc.subjectContinuous dynamical systemsen_US
dc.subjectNormal forms; Resonanceen_US
dc.subjectScaling transformationen_US
dc.titleGeneralized Normal Forms in Dynamical Systems Near Equilibriumen_US
dc.typeconferenceObjecten_US
dc.authorid0000-0002-1210-2448en_US
dc.departmentRektörlük, Rektörlüğe Bağlı Birimler, Enformatik Bölümüen_US
dc.institutionauthorPerdahçı, Nazım Ziya
dc.identifier.doi10.1007/978-3-031-60907-7_20en_US
dc.identifier.startpage261en_US
dc.identifier.endpage268en_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.authorwosidC-8387-2015en_US
dc.authorscopusid59560730700en_US
dc.identifier.scopus2-s2.0-85218074576en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Տcopus [1648]
    Scopus | Abstract and citation database

Show simple item record