Mimar Sinan Fine Arts University Institutional Repository

DSpace@MSGSÜ digitally stores academic resources such as books, articles, dissertations, bulletins, reports, research data published directly or indirectly by Mimar Sinan Fine Arts University in international standarts, helps track the academic performance of the university, provides long term preservation for resources and makes publications available to Open Access in accordance with their copyright to increase the effect of publications.

Search MSGSÜ

Show simple item record

dc.contributor.authorAsikgil, Baris
dc.date.accessioned2025-01-09T20:12:06Z
dc.date.available2025-01-09T20:12:06Z
dc.date.issued2014
dc.identifier.issn0361-0918
dc.identifier.issn1532-4141
dc.identifier.urihttps://doi.org/10.1080/03610918.2013.784337
dc.identifier.urihttps://hdl.handle.net/20.500.14124/8385
dc.description.abstractA seemingly unrelated regression (SUR) model is defined by a system of linear regression equations in which the disturbances are contemporaneously correlated across equations. However, the disturbances can also be serially correlated in each equation of the system. In these cases, estimating SUR becomes more complicated. Some methods have been considered estimating SUR with low-order autoregressive (AR) disturbances. In this article, SUR with high-order AR disturbances are considered and a tapering approach is examined under this situation. Two modified methods for estimating SUR are obtained by using this approach. A comprehensive Monte Carlo simulation study is performed in order to compare small-sample efficiencies of the modified methods with the others given in the literature.en_US
dc.language.isoengen_US
dc.publisherTaylor & Francis Incen_US
dc.relation.ispartofCommunications in Statistics-Simulation and Computationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectContemporaneous correlationen_US
dc.subjectTaperingen_US
dc.subjectSURen_US
dc.subjectLinear regressionen_US
dc.subjectHigh-order AR disturbancesen_US
dc.titleA Novel Approach for Estimating Seemingly Unrelated Regressions with High-Order Autoregressive Disturbancesen_US
dc.typearticleen_US
dc.authoridASIKGIL, BARIS/0000-0002-1408-3797
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.1080/03610918.2013.784337
dc.identifier.volume43en_US
dc.identifier.issue9en_US
dc.identifier.startpage2061en_US
dc.identifier.endpage2080en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ4
dc.identifier.wosWOS:000334723600003
dc.identifier.scopus2-s2.0-84899074137
dc.identifier.scopusqualityQ2
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.snmzKA_20250105


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record