Mimar Sinan Fine Arts University Institutional Repository
DSpace@MSGSÜ digitally stores academic resources such as books, articles, dissertations, bulletins, reports, research data published directly or indirectly by Mimar Sinan Fine Arts University in international standarts, helps track the academic performance of the university, provides long term preservation for resources and makes publications available to Open Access in accordance with their copyright to increase the effect of publications.Search MSGSÜ
Model selection using information criteria under a new estimation method: least squares ratio
| dc.contributor.author | Deniz, Eylem | |
| dc.contributor.author | Akbilgic, Oguz | |
| dc.contributor.author | Howe, J. Andrew | |
| dc.date.accessioned | 2025-01-09T20:12:06Z | |
| dc.date.available | 2025-01-09T20:12:06Z | |
| dc.date.issued | 2011 | |
| dc.identifier.issn | 0266-4763 | |
| dc.identifier.uri | https://doi.org/10.1080/02664763.2010.545111 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14124/8380 | |
| dc.description.abstract | In this study, we evaluate several forms of both Akaike-type and Information Complexity (ICOMP)-type information criteria, in the context of selecting an optimal subset least squares ratio (LSR) regression model. Our simulation studies are designed to mimic many characteristics present in real data - heavy tails, multicollinearity, redundant variables, and completely unnecessary variables. Our findings are that LSR in conjunction with one of the ICOMP criteria is very good at selecting the true model. Finally, we apply these methods to the familiar body fat data set. | en_US |
| dc.description.sponsorship | The Scientific and Technological Research Council of Turkey (TUBITAK) | en_US |
| dc.description.sponsorship | The authors offer their thanks to The Scientific and Technological Research Council of Turkey (TUBITAK) for their support and encouragement of young Turkish researchers. | en_US |
| dc.language.iso | eng | en_US |
| dc.publisher | Taylor & Francis Ltd | en_US |
| dc.relation.ispartof | Journal of Applied Statistics | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | model selection | en_US |
| dc.subject | least squares ratio | en_US |
| dc.subject | subset selection | en_US |
| dc.subject | information criteria | en_US |
| dc.title | Model selection using information criteria under a new estimation method: least squares ratio | en_US |
| dc.type | article | en_US |
| dc.authorid | Deniz, Eylem/0000-0001-8865-2086 | |
| dc.authorid | akbilgic, oguz/0000-0003-0313-9254 | |
| dc.authorid | Howe, John Andrew/0000-0002-3553-1990 | |
| dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
| dc.identifier.doi | 10.1080/02664763.2010.545111 | |
| dc.identifier.volume | 38 | en_US |
| dc.identifier.issue | 9 | en_US |
| dc.identifier.startpage | 2043 | en_US |
| dc.identifier.endpage | 2050 | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.identifier.wosquality | Q4 | |
| dc.identifier.wos | WOS:000298921300019 | |
| dc.identifier.scopus | 2-s2.0-79961138958 | |
| dc.identifier.scopusquality | Q1 | |
| dc.indekslendigikaynak | Web of Science | en_US |
| dc.indekslendigikaynak | Scopus | en_US |
| dc.snmz | KA_20250105 |
Files in this item
| Files | Size | Format | View |
|---|---|---|---|
|
There are no files associated with this item. |
|||
This item appears in the following Collection(s)
-
Տcopus [1648]
Scopus | Abstract and citation database -
Ꮃeb of Science [1851]
Web of Science platform














