Mimar Sinan Fine Arts University Institutional Repository

DSpace@MSGSÜ digitally stores academic resources such as books, articles, dissertations, bulletins, reports, research data published directly or indirectly by Mimar Sinan Fine Arts University in international standarts, helps track the academic performance of the university, provides long term preservation for resources and makes publications available to Open Access in accordance with their copyright to increase the effect of publications.

Search MSGSÜ

Show simple item record

dc.contributor.authorGökmen, Neslihan
dc.contributor.authorKocadağlı, Ozan
dc.contributor.authorCevik, Serdar
dc.contributor.authorAktan, Çağdaş
dc.contributor.authorEghbali, Reza
dc.contributor.authorLiu, Chunlei
dc.date.accessioned2025-09-30T06:18:39Z
dc.date.available2025-09-30T06:18:39Z
dc.date.issued2025en_US
dc.identifier.citationGökmen, N., Kocadağlı, O., Cevik, S., Aktan, C., Eghbali, R., & Liu, C. (2025). Enhancing AI-based decision support system with automatic brain tumor segmentation for EGFR mutation classification. Medical & biological engineering & computing, 10.1007/s11517-025-03447-2. Advance online publication. https://doi.org/10.1007/s11517-025-03447-2en_US
dc.identifier.issn1741-0444
dc.identifier.urihttps://doi.org/10.1007/s11517-025-03447-2
dc.identifier.urihttps://hdl.handle.net/20.500.14124/10153
dc.description.abstractGlioblastoma (GBM) carries poor prognosis; epidermal-growth-factor-receptor (EGFR) mutations further shorten survival. We propose a fully automated MRI-based decision-support system (DSS) that segments GBM and classifies EGFR status, reducing reliance on invasive biopsy. The segmentation module (UNet SI) fuses multiresolution, entropy-ranked shearlet features with CNN features, preserving fine detail through identity long-skip connections, to yield a Lightweight 1.9 M-parameter network. Tumour masks are fed to an Inception ResNet-v2 classifier via a 512-D bottleneck. The pipeline was five-fold cross-validated on 98 contrast-enhanced T1-weighted scans (Memorial Hospital; Ethics 24.12.2021/008) and externally validated on BraTS 2019. On the Memorial cohort UNet SI achieved Dice 0.873, Jaccard 0.853, SSIM 0.992, HD95 24.19 mm. EGFR classification reached Accuracy 0.960, Precision 1.000, Recall 0.871, AUC 0.94, surpassing published state-of-the-art results. Inference time is ≤ 0.18 s per slice on a 4 GB GPU. By combining shearlet-enhanced segmentation with streamlined classification, the DSS delivers superior EGFR prediction and is suitable for integration into routine clinical workflows. © International Federation for Medical and Biological Engineering 2025.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.ispartofMedical and Biological Engineering and Computingen_US
dc.rightsinfo:eu-repo/semantics/restrictedAccessen_US
dc.subjectAutomatic segmentationen_US
dc.subjectBrain tumoursen_US
dc.subjectDeep learningen_US
dc.subjectEGFR mutationen_US
dc.subjectGlioblastomaen_US
dc.titleEnhancing AI-based decision support system with automatic brain tumor segmentation for EGFR mutation classificationen_US
dc.typearticleen_US
dc.authorid0000-0003-4354-7383en_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, İstatistik Bölümüen_US
dc.institutionauthorKocadağlı, Ozan
dc.identifier.doi10.1007/s11517-025-03447-2en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorwosidAAO-2482-2021en_US
dc.authorscopusid57208567048en_US
dc.identifier.wosqualityQ3en_US
dc.identifier.wosWOS:001575744300001en_US
dc.identifier.scopus2-s2.0-105016742554en_US
dc.identifier.pmidPMID: 40983859en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record