Mimar Sinan Fine Arts University Institutional Repository
DSpace@MSGSÜ digitally stores academic resources such as books, articles, dissertations, bulletins, reports, research data published directly or indirectly by Mimar Sinan Fine Arts University in international standarts, helps track the academic performance of the university, provides long term preservation for resources and makes publications available to Open Access in accordance with their copyright to increase the effect of publications.Search MSGSÜ
Enhancing AI-based decision support system with automatic brain tumor segmentation for EGFR mutation classification
| dc.contributor.author | Gökmen, Neslihan | |
| dc.contributor.author | Kocadağlı, Ozan | |
| dc.contributor.author | Cevik, Serdar | |
| dc.contributor.author | Aktan, Çağdaş | |
| dc.contributor.author | Eghbali, Reza | |
| dc.contributor.author | Liu, Chunlei | |
| dc.date.accessioned | 2025-09-30T06:18:39Z | |
| dc.date.available | 2025-09-30T06:18:39Z | |
| dc.date.issued | 2025 | en_US |
| dc.identifier.citation | Gökmen, N., Kocadağlı, O., Cevik, S., Aktan, C., Eghbali, R., & Liu, C. (2025). Enhancing AI-based decision support system with automatic brain tumor segmentation for EGFR mutation classification. Medical & biological engineering & computing, 10.1007/s11517-025-03447-2. Advance online publication. https://doi.org/10.1007/s11517-025-03447-2 | en_US |
| dc.identifier.issn | 1741-0444 | |
| dc.identifier.uri | https://doi.org/10.1007/s11517-025-03447-2 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14124/10153 | |
| dc.description.abstract | Glioblastoma (GBM) carries poor prognosis; epidermal-growth-factor-receptor (EGFR) mutations further shorten survival. We propose a fully automated MRI-based decision-support system (DSS) that segments GBM and classifies EGFR status, reducing reliance on invasive biopsy. The segmentation module (UNet SI) fuses multiresolution, entropy-ranked shearlet features with CNN features, preserving fine detail through identity long-skip connections, to yield a Lightweight 1.9 M-parameter network. Tumour masks are fed to an Inception ResNet-v2 classifier via a 512-D bottleneck. The pipeline was five-fold cross-validated on 98 contrast-enhanced T1-weighted scans (Memorial Hospital; Ethics 24.12.2021/008) and externally validated on BraTS 2019. On the Memorial cohort UNet SI achieved Dice 0.873, Jaccard 0.853, SSIM 0.992, HD95 24.19 mm. EGFR classification reached Accuracy 0.960, Precision 1.000, Recall 0.871, AUC 0.94, surpassing published state-of-the-art results. Inference time is ≤ 0.18 s per slice on a 4 GB GPU. By combining shearlet-enhanced segmentation with streamlined classification, the DSS delivers superior EGFR prediction and is suitable for integration into routine clinical workflows. © International Federation for Medical and Biological Engineering 2025. | en_US |
| dc.language.iso | eng | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | Medical and Biological Engineering and Computing | en_US |
| dc.rights | info:eu-repo/semantics/restrictedAccess | en_US |
| dc.subject | Automatic segmentation | en_US |
| dc.subject | Brain tumours | en_US |
| dc.subject | Deep learning | en_US |
| dc.subject | EGFR mutation | en_US |
| dc.subject | Glioblastoma | en_US |
| dc.title | Enhancing AI-based decision support system with automatic brain tumor segmentation for EGFR mutation classification | en_US |
| dc.type | article | en_US |
| dc.authorid | 0000-0003-4354-7383 | en_US |
| dc.department | Fakülteler, Fen Edebiyat Fakültesi, İstatistik Bölümü | en_US |
| dc.institutionauthor | Kocadağlı, Ozan | |
| dc.identifier.doi | 10.1007/s11517-025-03447-2 | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.authorwosid | AAO-2482-2021 | en_US |
| dc.authorscopusid | 57208567048 | en_US |
| dc.identifier.wosquality | Q3 | en_US |
| dc.identifier.wos | WOS:001575744300001 | en_US |
| dc.identifier.scopus | 2-s2.0-105016742554 | en_US |
| dc.identifier.pmid | PMID: 40983859 | en_US |
Files in this item
| Files | Size | Format | View |
|---|---|---|---|
|
There are no files associated with this item. |
|||
This item appears in the following Collection(s)
-
ҎubMed [275]
PubMed Central -
Տcopus [1648]
Scopus | Abstract and citation database -
Ꮃeb of Science [1851]
Web of Science platform














